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Abstract shape variation of the LV, low signal-to-noise ratio of aftr

sound data, and edge dropout due to imaging conditions.

Recently, there has been an increasing interest in the in-  Lately, there has been an increasing interest in the study
vestigation of statistical pattern recognition models tloe of statistical pattern recognition approaches to solve the
fully automatic segmentation of the left ventricle (LV) of automatic LV segmentation problerf, [3, 5]. These ap-
the heart from ultrasound data. The main vulnerability of proaches build a classifier by modeling statistically the LV
these models resides in the need of large manually anno-appearance and shape using a set of manually annotated
tated training sets for the parameter estimation procedure images (i.e., the training set). Essentially, this procedu
The issue is that these training sets need to be annotatedconsists of estimating a large number of parameters of such
by clinicians, which makes this training set acquisitionpr  statistical model, and the robustness of this estimation is
cess quite expensive. Therefore, reducing the dependencdirectly related to the size and richness of the training set
on large training sets is important for a more extensive ex- Actually, it is not uncommon that systems based on such
ploration of statistical models in the LV segmentation prob approaches need in the order of hundreds of training im-
lem. In this paper, we present a novel incremental on-line ages b, 18]. However, acquiring such large training sets is
semi-supervised learning model that reduces the need ofprohibitively expensive for most of the researchers wagkin
large training sets for estimating the parameters of statis on medical image analysis, resulting in insufficient iniest
cal models. Compared to other semi-supervised techniquesgation of these models. Therefore, methods that alleviate
our method yields an on-line incremental re-training and the dependence on large annotated training sets are of ut-
segmentation instead of the off-line incremental re-fregn =~ most importance for a more extensive exploration of statis-
and segmentation more commonly found in the literature. tical models in medical image analysis.

Another innovation of our approach is that we use a statis-  The problem of training statistical models with few man-
tical model based on deep learning architectures, which are ually annotated data can be addressed via semi-supervised
easily adapted to this on-line incremental learning frame- learning methodsZJ. The main assumption underlying
work. We show that our fully automatic LV segmentation these methods is that samples belonging to the same class
method achieves state-of-the-art accuracy with trainietgs  tend to cluster together in the feature space, and if a few
containing less than twenty annotated images. annotated examples are given, we can associate unanno-
tated samples of the cluster with the label of annotated sam-
ples in that same cluster, as shown in Hig.One class of
1. Introduction semi-supervised learning methods is based on incremental
or self-training algorithms which uses a small training set

One of the major problems investigated in medical image to initially estimate the model parameters, and then use thi
analysis is the automatic segmentation of the left vermtricl model to classify unannotated samples and retrain the same
(LV) of the heart from ultrasound data. From a clinical set- model P, 11, 12, 15, 16, 17]. Particularly important for
ting viewpoint, there are important reasons that justify th these methods are the type of model used and the way of
interest in solving this problem, such &§:[1) it can in- classifying unannotated samples for re-training. Thiscla
crease patient throughput; and 2) it can reduce inter-usessification of unannotated samples has shown to be more ef-
variation in the LV delineation procedure. From the medical fective if an external classifier is usetll] 15].
image analysis standpoint, LV segmentation has been inten- |n this paper, we introduce a new incremental on-line
sively investigated over the last years because this pmoble semi-supervised approach for the problem of automatic LV
offers several challenges, including: large appearande an segmentation. Initially, a small annotated training set is
- ” 4 by the ECT (ISRIST olurianual fund used to estimate the parameters of a statistical model that
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vectorx, and the parameter vectér In order to estimate
0, we use the annotated training get, Y}, the test se-

training
quence{l; },—1. 7, and an external classifip(yl(e) |y, Xi),

e : = - which represents the probability of segmenta&éﬁ given
+ unlabeled POs1x) > PO 1) g o) s pralx) an initial guessy; and feature vectax; (note that this ex-

4 point labeled with class i A
o point labeled with class » ternal classifier does not have any parameters to estimate).

The estimation 08 can be summarized a$4]:

Figure 1. Semi-supervised learning. The graph on the l@fivsh * _
the classification problem where only a small subset of thepses 0" = argmax P(Y|X, )
are annotated. The graph on the right displays the resuérof-s (
supervised learning, wherB(o|x) is the probability of clas® P
given pointx. o arg g log Z fi

X €1y
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fier to detect positive hypotheses (i.e., LV segmentations) = arg max log Z fip(yi [¥i, %:)p(Y yi[%i, X, 0)
each frame, which are verified by an external classifier that X€ly fi
uses a prior LV model of shape and appearance (i.e., this ex- (1)
ternal classifier does not go through any training process).
The positive hypotheses that have survived the verificationwhere f; is an auxiliary function that has the constraints
process are then added to the training set, which is used téy", f; = 1 and f; > 0, y; = argmaxy p(y|X;,0), and
re-train the statistical model incrementally. The systésna (o) _ . oo ¥.%,). Using Jensen’s inequality, we
mgggfes an LV segmentation using the updated Stat'St'Ca%ém find t%e follil)\ll)v(i%’gylbv&e)zr boun% to the object?ve fu?w/ction

Our approach is innovative in the sense that it yields ()
line re-training and segmentation, instead of the more com- (~(e) 150, %)pV, 5:[%i, X, 0)
mon setting adopted in semi-supervised approaches with Z filog PYi Y6, Xi)PAY, Vil s
off-line re-training and segmentation. This innovation con- %icl, fi
strains the annotated samples to be included in the training 2
set for re-training. This means that we have to include sam- Lower Bound (2)
ples which have been annotated with relatively low confi- p(§§e)|§i,ii)p(y,§i|§i, X,0)
dence, or the process halts due to lack of new samples for log Z Ji 7, ’
re-training (this relaxation has also been explored by hevi Xi€l !
et al. [L1]). Another innovation of our approach is that the L . - . N
classifier being trained is based on deep neural netwafks [ Which is easier to maximize than the original objective func
which, contrary to the more commonly used boosting clas- tion (1). Therefore, we solve the following optimization
sifiers P, 11, 15, 16, 17, is straightforward to be adapted Problem:
from a batch to an incremental (on-line) learning setting. F ()1~ ~ o
nally, we derive the formulation of the incremental on-line g« _ arg max Z filog Py 1yi xi)p(V, yil%i, X, )

)

<

semi-supervised approach. The main result of the paper is - fi
that we achieved competitive fully automatic LV segmenta- xic

tion results in public databasesd using less than twenty s.t. Z fi=1Lfi>0Viel, .. T.
manually annotated images. %.el,

3
2. Incremental On-Line Semi-supervised ®)
Learning In order to find the functionf;, we take the derivative
- ) . of the Lagrangianl = X ,fi — 1) — > ,vifi —
For the derivation of our algorithm, assume that an im- P3O 4% )PV %, X,0)
age region is represented by a feature vegtar R, and > ox,eq, Jilog === with respect tof;
the annotation of an image region is denoted by a vectorand set it to zero, which produces:
y € RN containingN two-dimensional points. Consider
that we have a set of training image regions represented by fi= p(y§€>|yi, X )p(¥ilXi, 0). 4
X with Y denoting the respective set of manual annotations,
and that we also have a test sequence of unannotated im- Hence, we can formulate an iterative algorithm compris-
ages{l;}:—1.r. An image region is a crop of the orig- ing the following expectation (E) from4] and maximiza-
inal image that contains the annotation aligned accordingtion (M) steps:
to a specific position, scale and rotation of the annotation
points (see Fig3). The goal of the incremental learning is
to estimate the parameteé@of the classifiep(y|x, ) that ) (D)= = == =)
measures the probability of annotatigrgiven the feature [ =p(y e X)p(yilxi, 007 ) (5)

o E-step:



e M-step: Another important pointin Alg. 1 is the size of the initial
o) ~ ~ training set used to estimag&® . For supervised learning
0" =arg max E;o [logp(le, 9)} .+ (6)  algorithms (i.e.withoutre-training), the performance of the
classification in unseen data deteriorates significantti wi
T . Lo = the use of small training sets, while semi-supervised learn
where~the §uperscnp~tze|)nd|cates the iteration indest’ = ing approaches tend to be more robust to the size of this
XU{x;}, Y =YU{y;"}, and Ew[logp(.)] denotes the initial training set. We compare these two learning algo-
" rithms in Sec6, where the supervised algorithm is referred
expected value dbg p(.) over f; . to as 'Supervised’ and the semi-supervised is denoted by

Algorithm 1 Incremental On-line Semi-supervised Learn- ln%ﬁ?ﬁggﬂém note about Alg. 1 is that the samples to
ing be included in the training set are obtained by sampling a
1 for t= 13T do ) . Gaussian mixture model (GMM) represented By, (vhere
2:  E-step: Sample and re-build training set N (u, ) is the Gaussian probability density function with
S > ® () meany and covarianc& (we set to be10™ x I, with I
sample(Y'”, X) ~ > £ x N (3,73, the identity matrix). Note that the number of samples drawn
*i €1y (7) from the GMM is the same as the size of the initial train-

with £ > ~ defined in(5).

ing set|{X, V}|, and that the number of components o (
Updatey = YU Y©, X =xuUXx

is the number of detections i(rii,i(e)), which produced
3:  M-step: re-estimate (ilagsifier parameters fi(t) > .
0®) = arg maxg p(V|X, 8)
subject tof >4, 3. fP =1
4:  Produce annotation for current image In this section we describe a toy example that compares
the algorithms 'Supervised’ and 'Incremental’. This exam-
v = / / yp(ylx,0)p(x)dydx, (8) ple also facilitates the understanding of the role @i Alg.
y Jxel 1 (Fig. 2). The setting simulates that of the real experi-
ment as follows: 1) the data space is described by variable
x andy € {0,1} denotes the annotation, and 2) there is a

Therefore, we propose an iterative on-line EM algorithm hidden generative probabilistic model per class denoted by

in Alg. 1, whereT denotes the size of the unannotated p(x[y) ~ N(py, o) with
test sequenc¢l,};—1. 7. The goal of the algorithm is to N(=2,1), ify=0
maximize (with respect t@) and generalize (in the data Py = { N(+2’ 1)’ ify=1 - 9)
spacex) the model(y|x, @) with the constraint that there Y
are no transitions op(y|x, 6) on high density regions of  angs ~ A/(1,1) with A(u, o) representing the Gaussian
p(x) [20. Both the generalization goal and the constraint gensity function with meap and standard deviatian The
are achieved by incrementally incorporating into the train goal is to learn the parametelis b] of the logistic model
i”ﬁ set the (S)"?‘mpice(%, v )Blwh:\‘l?h PFOd#Cegft) 29 (g), ply = 1Ix. [a,b]) = 757ty using Alg. 1. This means
wherey > 0 is a free variable. Notice that Alg. 1 produces _ oxp1ax

: X . o that att = 0, we generate annotated samples for classes
on-line segmentation results iB)(while incrementally re- . : )
training the classifier. Typically, semi-supervised learn y € {0,1} using the model inq), and learnja, b}, pro

. ; X RARRS . ducing the results for the supervised algorithm. #or 0,
ing algorithms re-frain the classifier incrementally usitig new unannotated samples for both classes are generated ac-
training set, and the classification results are prodwied

St . . cording to @), which are annotated usin@)( This new
e i rocess £ ey e, plfaning set s hen vsed or e etmatig (sce Alg.D)

. 4 g . “The parameters resulting from this learning procedure are
training set is up(_jate_d for the re-training process. Using denoted bvia. Bl We al timate th ters for th
the off-line classification, one can select the data that pro i deer;I) Sass%ilér ]k; gnaéi;)tiﬁs ?t?a?nine E(i,itrzrgceore(;; 0&:0 the
ducedfi(t) > ~ for high values ofy [2(] (i.e., the data for y9 g g 9

which the current classifier is highly confident). For the on- distributions

line classification, high vaIue~s of may stop the addition p(x|ly = 0) ~ N(=2,1), andp(x|y = 1) ~ N(+2,1).

of newly annotated samples 3andX’, which can halt the (10)
incremental re-training process. On the other hand, low val The parameters of the logistic model are then learned with
ues ofy may cause the addition of false positive samples to maximum posterior estimation, producing andb*. Fi-

the training sety) andX'. Therefore, finding the optimal nally, we consider the external C|aSSIfye(ry(e)|yl,xZ) in
value fory requires the study of such trade offs. In Sd. (7) as a prior model for the posterior classifier. For this
we show a toy example demonstrating the importaneg of reason, we simulate this external classifier with a logistic
and in Sec6, we provide an empirical study of the influence model with fixed parameters.,;, = 1 andb.,; = 0 (red-

of the thresholdy on the performance of the system. dashed curve on left graph in Fig).

2.1. Toy Example

5: end for
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Figure 3. Original training image (top left) with the manua
Figure 2. Toy example. The left graph shows the ideal and ex- segmentation in yellow line and star markers (top middlehwie
ternal classifiers, and the right graph displays the erramend ~ rectangular patch representing a canonical coordinatersyfor
variance for each algorithm at different valuesfoNote that'Su-  the segmentation markers. The top-right image shows tlee-ref
pervised’ yields the same error values because it does pende  ence patch with the base and apical points highlighted acatdd
on~. Please see text for details. at their canonical locations within the patch (these paanésused

to define the rigid transform of the patch). The images on &ge s

ond and third rows display several positive and negativehest

In this experiment, we consider the following sets:

e initial training setsXC = {(200 x 200), (100 x
100), (50 x 50), (20 x 20), (10 x 10)}, with each el-
ement representing number of positivesnumber of
negative samples;

e setofyvaluesC = {0.1,0.2,...,0.9};

(respectively) used to train the rigid classifier.

[s;]j=1..~ with s; € R2. Note thatx is obtained with the
rigid transformationy applied to the imagé through the
functionh : I x 9 — X,;. The rigid transformation is
obtained in order to align the base and apical points of the

annotation (top-right image of Fig).into specific values in
a canonical system.

The classifierp(y|x, 0) is composed of rigid and non-
rigid detectors. The rigid detector determines the proba-
bility that x represents an image region containing a left
ventricle aligned in the same way as the training set images
(see positive patches in Fig). The non-rigid detector de-
termines the probability that the contgurepresents an LV
segmentation ak. More specifically, we have:

e set of algorithms\t = {"Supervised’Incremental}.

For each element ¢ K, I € £ andm € M,
we run 10 times the Alg.1. Note that when =
'Supervised’, we assum& = 0 in Alg. 1, otherwise,
T = 10. The error is computed as follow$, (k,1,m) =
[ p(error, k, 1, m|x)p(x)dx with

p(error k, I, m|x) = (p(y = 1]x, [a", %))

A 7 2 (11)
- p(y = 1|X7 [a(kv L m)v b(kv L m)])) )

p(y1%,0) = Y pyle,x,01.0)p(clx1,01,,),
c=0,1

(12)

wherela(k, 1, m), b(k,l, m)] are the parameters learned for ) )

each of the indicet € K, ! € £ andm € M above.  Whered = [0, 0,] with 6, andé.. representing the param-
In Fig. 2, the right graph shows the mean and variance of eters of the non-rigid and rigid classifierd,[respectively,
P,(k,1,m) over k with respect td andm. From Fig.2, andc denotes a random varl_able, where- 1 means thak
we can see that 'Incremental’ yields smaller errors than 'su represents an LV image region (ane- 0 denotes the prob-

pervised’ in terms of mean and varianceRf(k,l,m) for ~ ability thatx does not represent an LV image region). The
~ < 0.3. parameters of the rigid classifié. are the following: 1)

number of hidden layers, 2) number of nodes per layer, and
3. Segmenting the Left Ventricle using Deep 3) the parameters of the logistic model of each connection
L earning Methods between network nodes. The non-rigid classifier consists

of separate a deep neural network where the paranmters

The classifierp(y|x,0) is based on deep neural net- comprises not only the parameters 1-3 above, but also the
works [7], which is a type of deep learning classifier. Deep parameters of the shape model, which is represented by a
neural networks have been recently explored by Carneiroprincipal component analysis (PCA) model that reduces the
et al. [2], who showed that this classifier can achieve dimensionality of the annotation. The input for the non-
state-of-the-art LV segmentation results with 400 anmeatat rigid classifier are the profiles of perpendicular lines take
training images. Moreover, contrary to boosting classi- across an average LV contour traced in the image regjon
fiers [0, 11, 15, 16, 17], the adaptation of deep belief net- and the output is the likelihood of a specific annotatjon
works from a batch to an on-line learning is straightforward indicating the LV border (see Fid).

The annotated training set (F&).is denoted byD = The parameters of the classifier are learned with maxi-
{(I,9,y)i}i=1..m, with LV imagesI;, rigid transformation ~ mum a posteriori strategy using the training procedure pro-
parameters); € R° (positionp € R?, orientation¢ € posed by Hinton and colleagued.[The training consists of
[, 7], and scaler € R2), and manual annotations = two stages: an unsupervised training where an auto-encoder
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Figure 5. Contour produced by the external model-based bV se
Figure 4. Intensity value profiles (from inside to outside ttv) mentation (right) given the initial guess (left) and setwbkes.
of the lines drawn perpendicularly to annotation points.oJeéh
intensity profiles (and respective LV contour location) ased to
train the non-rigid classifier. Figure fror][

Training set

is built, and a supervised learning that produces the clas-
sifier. In the first stage, several layers of restricted Boltz
mann machines (RBM) are greedily learned where the goal
is to reconstruct the input data. Then, one last network
layer is added, and the network weights are updated (via
back-propagation) using a supervised training set, which
produces a discriminative classifier.

4. External Model-based Left Ventricle Seg-

. Figure 6. Firstimages of a subset of the training and test set
mentation

me-lt-l*r]]g d?ﬁ;ﬁrﬂsaésl‘;/hgﬁzséﬂez (;(;résrlﬁgs dglf iae mﬁg%’gggledal_ikelihood that a set of edges forms a specific shape. We
: ; gn (ie., P adapt QP to measure the likelihood that a set of strokes
rameter is estimated from training data). Recall that this

S = =y _
external segmentation is denoted |y, X;) used in represent aQS,LV C(zr;tour ?? followse(y; ", yi, Xi) =
the definition off; in (4). In this model, the left ventri-  Llicstrores @ %1 % 579" x v, whereLs; represents the
cle has a prior shape, its borders are represented by imag§trOke length.Lg; denotes the gap length, at; is the
edges, and the distribution of gray values are consistent in

overlap length. The QP parameters have been arbitrarily
side and outside the chamber. In particular we implementedS

et as fol!ows:a =2,4=09v =02, which means
the Shape Probabilistic Data Association (S-PDAF) algo- that we give positive weight to stroke length and negative
rithm proposed by Nascimento et al3], which is an exten-

weight to contour gaps and stroke overlaps (note that vari-

sion of the seminal work by Bar-Shalori]| The S-PDAF ations of these values produce little effect in the final seg-
is used in this paper because of its fast detection, easy imMmentation result, as long as< [1.5,3.0, 5 € [0.6,0.95],
plementation and robustness to typical image noise presengndv € [0.1,0.3]) Hereafter, assume thaty'“ |y, ;) =
in medical images. Q(yl@’ Vi %)

The algorithm (Fig.5) has the following major steps.
Given an initialization contouy;, S-PDAF searches for 5 | earning and Detection Details
several coherent hypotheses (strokes) for alternative loc
tions of the LV contour. The search for strokes uses an en- In this section, we first introduce the training and test
ergy function that is minimized based on the support from sets, and then we provide some details of the incremental
the image in terms of texture and edge location. The final on-line learning and detection procedures.

LV contoury® is formed by combining a set of strokes ac- Ve use the two sets of data available from][ which

cording to the prior LV model of shape and appearancg [ have been annotated by a cardiologist. The first set con-
where stroke overlaps are suppressed and gaps are filled. tains 400 ultrasound images of the left ventricle of the hear
which have been taken from 12 sequences (12 sequences

In order to compute the probabiliy(y|”' ¥, %;) of from 12 subjects with no overlap), where each sequence
the contourﬁe) produced by S-PDAF, we need to have a contains an average of 34 annotated frames. Let us denote
way to measure whether the strokes used to produce thighis set agD. The second set, used exclusively for testing,
LV contour has good continuation, few overlaps and few contains two sequences of 80 images, where each sequence
gaps. The qualitative probability (QP) proposed by Jepsonhas 40 annotated images (two sequences from two subjects
and Mann [.(] provides a principled way of measuring the with no overlap). This set is denoted Bywith sequences



NON-RIGID :c =4 Aobe-d only ato = 4, where the training sample consists of a line
ing of 41 pixels extracted perpendicularly from the LV contour

points (see Figd) and the label to learn is the pixel index in

{1, ...,41} that is closest to the LV contour. Fig.displays

the evolution of the average ¢B'" — 6~V as a func-

tion of the iteration parameterfor the rigid classifier in at
scaless € {4,8,16} and non-rigid regressor in at = 4.

It is worth noticing that as the number of initial training-im

20

10 15
t (iteration index)

RIGID: =8 RIGID 0 - 16 ages increases, the convergence of the incremental on-line
St SR training improves. . . o
| < io0waning] 150 | =100 vainimg. The detection procedure consists of running the rigid

classifier at scale = 16 on the Kqaseinitial hypothe-
ses P] (here, Kcoarse = 1000), by sampling a distribution
in the space of rigid transformations (the parameters ef thi
VY distribution are learned from the training set). From this
S PO L I B T S detection, cluster the hypotheses (using k-means algayith
and select the tofiine clusters (hereKjne = 10) in terms

Figure 7. Convergence of the deep belief network paraméters of the. beSt hypothesis within each cluster. Then run therigi

each one of the classifiers by computing the average of the abs classifier at scaler = 8 on these hypotheses and repeat

lute difference of the weights between on-line learninggiiens. the procedure for scale = 4. Finally, run the non-rigid

The legend shows the number of images used during superviseclassifier over the final togsine hypotheses. The final seg-

training of the classifier (initial training set size). mentation contour points are then projected to the priricipa
component analysis (PCA) space built with the respective
subset of the training s& [2]. The PCA space transforms

A and B. Note that there is no overlap between subjects the 41-dimensional vector (representing the contour) to a 5

in setsD and7. All quantitative comparisons of various dimensional vector, which is back projected onto the origi-

algorithms [L3] use only the two sequences in the test set nal contour space, producing a less noisy final contour. All

7T, so we use the same sequences in order to provide a faihypotheses found are then averaged (this is an estimation of

comparison with the other methods. The first image of two the decision function in E® in Alg. 1) using the result of

sequences fror® and two sequences froffi are shown in  the classifiep(y|x, ) as weights.

Fig. 6. .

For the training procedure, recall that the parameters of 6. EXperiments
the discriminative classifigi(y|x, @) presented in1) con-

sists of the parameteés. and@,, of the rigid classifier and : . )
non-rigid regressor, respectively. This classifier isiafi portance of two key parameters in Alg.1, which are: 1)

trained Gupervisedtraining) with a subset oD (in this the confidence threshold, and 2) the number of images

paper, we consider subsets of siZes6, 10, 20, 50, 100} used to estimaté'”). We also show a quantitative compari-
that are formed by uniformly samplin®) to maximize son between the algorithms 'Supervised’ and 'Incremental’
p(V|X,6), which builds6© in Alg. 1. Given a test se- Furthermore, we compare quantitatively the performance of
quence ir7 the classifier is iteratively traineéhcremental 04" algorithm and of state-of-the-art LV detectors reqent
training), according to the description of Alg. 1. proposed, 5, 1. The performance Of. the deteptors IS
We follow the same multi-scale training procedure for assessed by comparing the contour estimates with manual
the rigid classifier and non-rigid regressor described by reference contours (see Sepusing the error measures de-

. : : : fined below.
Carneiro et al. J]. The image scale space is built as fol- . T LT .
lows: L(p,o) = N(p,o) * I(p), whereN (p, o) is the Let yi = I[s; i1y, andys = [t/ ]is.v, with

Gaussian kernek is the convolution operatof,(p) is the ~ Si% € R, be two vectors of points representing the esti-
input image & is,the image scale parameter’ apds the mated and reference LV contours, respectively. The small-

image coordinate. The rigid classifier is trained at three est distance from a pois, to the curveys is d(s;, y2) =

scaless = {4,8,16} in order to form a coarse-to-fine de- Lo [[£; —s:/|2, which is known as the distance to the clos-
tection approach. For the rigid classifier, we build positiv est point (DCF). We use the error measures below for the

and negative training sets that are defined based on a scalXperments. The average error (AV) is defined ke[

dependent margin, which increases by a factor of two after 1 &

each octave. The positive set is built using samples that are dav(y1,y2) = — Z d(s;,y2)- (13)
within the margin explained above using the manual anno- N i=1

tations of the training setand the detectionsiaf Alg. 1. - o py5,5dorff distance (HDF)[is described as:
while the negative set consists of samples taken from ran-

dom locations, scales and orientations that have a distance dupr(y1,y2) =

from the samples in the positive set of at least the margin

explained above (Fig?). The non-rigid regressor is trained max (mf‘x{d(si’ y2)}, mﬁx{d(tﬂ’v YI)})'

0 5

In this section, we show empirical evidence of the im-

(14)
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Figure 8. Mean and standard deviation of error measur@safnd
(15) as a function ofy for several initial training sets of variable
sizes. Other error measures have been omitted due to lapkoé s
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The definition of the Hammoude distance (HMD] [s as
follows:

HDF

#((Ry, URy,) — (Ry, N Ry,))
#(Ry1 U Ry2)

where R, represents the image region delimited by the 35
contoury; (similarly for Ry,), and#(.) denotes the num-

ber of pixels within the region described by the expres-
sion in parenthesis. Finally, the mean absolute distance
(MAD) [ 19 is defined by:

davp (Y1, y2) = , (15)

iz #14 20({13] ¢

‘&Supervlsed ‘
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Figure8 uses7 (A) (i.e., the sequencd of the test set
T) to show how the error measurek3| and (L5) vary as [l
a function of. The results in Fig8 are shown using the
average and standard deviation results after running Alg. 1
with initial training sets of size$2, 6, 10, 20, 50, 100} (re-
call that each initial training set is formed by samplifg
uniformly). From Fig.8, we see that 'Incremental’ pro-
duces smaller and more stable resultsyfar {0.001, 0.1}, %
so we usey = 0.001 for the experiments below.

The final experiment shows how the incremental on-line
training method improves the performance of the system
initially trained with small training sets (this initial stem
is denoted by 'Supervised’). We also compare the results

with _the perf_oymance of the foIIowin_g methods: 1) the su- and each column denotes a different test sequence). Wetalao s
pervised training method of Carneiro et al] that uses ¢ getection results on the same test sets of the supetvised

400 training images; 2) the supervised training approach bying methods] and [5] and the unsupervised model-based method
Georgescu et alg] that uses hundreds of training images; [13.

and 3) the model-based method by Nascimento etl&]. [

that does not use any training set, but requires elaborate

strategies for producing the initial guess for the optimiza produced by 'Incremental’ and 'Supervised’ using an initia
tion function. It is important to mention that, differenbfm training set containing 10 annotated images.

the method proposed in this paper, the two competing ap-

proaches, 13] also use a dynamical model of the heart 7 Discussion and Conclusions

motion, which is usually associated with more precise LV

segmentation results. For this experiment, we build three In this paper, we presented a novel incremental on-line
different training sets of size&2, 6, 10, 20, 50, 100} (that semi-supervised learning methodology applied to the fully
is, we have6 x 3 = 18 distinct training sets) and show automatic segmentation of the left ventricle of the heart
the results using mean and standard deviation for each erfrom ultrasound data. The main novelty resides in the for-
ror measure (Fig9). Compared to 'Supervised’, note that mulation of the on-line learning and segmentation algatith
the 'Incremental’ reduces the standard deviation and mearthat keeps adding training images and producing LV seg-
errors for almost all error measures in both test sequencesmentation as frames of a new test sequence are presented to
Finally, compared to the state-of-the-art, notice thatrén the system. This contrasts with the off-line learning and de
mental’ produces competitive results with training sethwi  tection commonly found in similar semi-supervised learn-
less than twenty images for most of error measures. Fig-ing approaches. This novelty restricts the set of samples
urel1l0displays four cases comparing the LV segmentationsthat can be introduced into the training set, so the selectio

MAD
MAD

o T

0

05 1 15 2 25 3 3! -0
10g, (number of training images)

a) seq.7 (A)

Figure 9. Comparison of the performance of the proposeakincr
mental on-line methods and the supervised approach uséngrth
ror measures13)-(16) (each row represents one error measure,



b) Supervised
(B)

a) Incremental
Sequencqd

a) Incremental b) Supervised

Figure 10. Examples of the detection on test sequefi¢es) and

7T (B) produced by the 'Incremental’ (first column) and the 'Su-

pervised’ (second column) models, where the initial tragnset
contained 10 annotated images.

criterion to add unannotated images to the training set be-

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[1

4]

[15]

comes a critical aspect of the algorithm, and we provide an [16]

empirical study on this issue. Another novelty lies in the
use of deep neural network which is easily adapted to the
semi-supervised learning framework. The results show that

it is possible to have state-of-the-art results with tnagni

sets containing less than twenty annotated training images
We plan to extend this work for the LV segmentation in 3D
ultrasound, and also in the joint detection of the LV endo-

cardium and epicardium.
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